Exercice : Somme 4
Calculer en mettant sous la forme la plus simple possible:
Question
Question
\(2.B=sin(x+\frac{π}{2})+sin(x+π)+sin(x+\frac{3π}{2})+sin(x+2012π)\)
Solution

\(B=cos(x)-sin(x)-cos(x)+sin(x)=0\)
Question
\(C=sin(\frac{π}{5})+sin(\frac{7π}{10})+sin(\frac{4π}{5})+sin(\frac{3π}{10})\)
Solution
\(C=sin(\frac{π}{5})+sin(\frac{7π}{10})+sin(\frac{4π}{5})+sin(\frac{3π}{10})\)
\(\frac{π}{2}+\frac{π}{5}=\frac{5π}{10}+\frac{2π}{10}=\frac{7π}{10}\)
\(\frac{π}{2}-\frac{π}{5}=\frac{5π}{10}-\frac{2π}{10}=\frac{3π}{10}\)
\(π-\frac{π}{5}=\frac{5π}{5}-\frac{π}{5}=\frac{4π}{5}\)
\(\iff C=sin(\frac{π}{5})+sin(\frac{π}{2}+\frac{π}{5})+sin(π-\frac{π}{5})+sin(\frac{π}{2}-\frac{π}{5})\)
\(\iff C=sin(\frac{π}{5})+cos(\frac{π}{5})+sin(\frac{π}{5})+cos(\frac{π}{5})\)
\(\iff C=2cos(\frac{π}{5})+2sin(\frac{π}{5})=2(cos(\frac{π}{5})+sin(\frac{π}{5})\)