Exercice : Difficile 7 Triangle

ABC est un triangle et I est le milieu de [BC].

(Voir les données sous la figure)

Calculer :

Question

  1. \(\vec{AB}. \vec{AC}\)

Solution

\(\vec{AB}. \vec{AC}\)

=\((\vec{AI}+\vec{IB}). (\vec{AI}+\vec{IC})\)

=\(\vec{AI}.\vec{AI} + \vec{AI}.\vec{IC}+\vec{IB}. \vec{AI}+\vec{IB}. \vec{IC})\)

=\(AI^2 + \vec{AI}.(\vec{IC}+\vec{IB})+\vec{IB}. \vec{IC})\)

or \(\vec{IC}=-\vec{IB}\)

=\(AI^2 + \vec{AI} \times 0+\vec{IB}. (-\vec{IB})\)

=\(3^2 - \vec{IB} . \vec{IB})\)

=\(3^2 - IB^2\)

=\(3^2 - 2^2\)

=\(9 -4\)

=\(5\)

Question

2.\(AB^2 + AC^2\)

Solution

\(\vec{AB}. \vec{AC}=\frac{1}{2}(AB^2+AC^2-(\vec{AB}-\vec{AC})^2)\)

\(\iff \vec{AB}. \vec{AC}=\frac{1}{2}(AB^2+AC^2-(\vec{AB}+\vec{CA})^2)\)

\(\iff \vec{AB}. \vec{AC}=\frac{1}{2}(AB^2+AC^2-(\vec{CB})^2)\)

\(\iff \vec{AB}. \vec{AC}=\frac{1}{2}(AB^2+AC^2-CB^2)\)

\(\iff 5=\frac{1}{2}(AB^2+AC^2-4^2)\)

\(\iff 10=AB^2+AC^2-16\)

\(\iff 10+16=AB^2+AC^2\)

\(\iff AB^2+AC^2=26\)

Question

3.\(AB^2 – AC^2\)

Solution

\(AB^2 – AC^2=(\vec{AB})^2-(\vec{AC})^2\)

\(\iff AB^2 – AC^2=(\vec{AB}+\vec{AC})(\vec{AB}-\vec{AC})\)

\(\iff AB^2 – AC^2=(\vec{AB}+\vec{AC})(\vec{AB}+\vec{CA})\)

\(\iff AB^2 – AC^2=(\vec{AB}+\vec{AC})(\vec{CB})\)

\(\vec{AB}+\vec{AC}=\vec{AI}+\vec{IB}+\vec{AI}+\vec{IC}=2\vec{AI}\)

car \(\vec{IB}=-\vec{IC}\)

\(\iff AB^2 – AC^2=2\vec{AI} . \vec{CB}=2||\vec{AI}|| \times ||\vec{CB}|| \times cos((\vec{AI};\vec{CB}))\)

\(\iff AB^2 – AC^2=2 \times AI \times CB \times cos((\vec{AI};\vec{CB}))\)

\(\iff AB^2 – AC^2=2 \times 3 \times 4 \times cos(-(\pi - \frac{\pi}{3}))\)

\(\iff AB^2 – AC^2=2 \times 3 \times 4 \times cos(-\frac{2\pi}{3})\)

\(\iff AB^2 – AC^2=2 \times 3 \times 4 \times cos(\frac{2\pi}{3})\)

\(\iff AB^2 – AC^2=2 \times 3 \times 4 \times \frac{-1}{2}\)

\(\iff AB^2 – AC^2=-12\)

Question

4.AB et AC

Solution

\(AB^2+AC^2=26\) (L1)

\(AB^2 – AC^2=-12\) (L2)

donc

\(2AB^2=14\) (L1+L2)

\(\iff AB^2=7\)

\(\iff AB=\sqrt{7}\)

\(2AC^2=38\) (L1-L2)

\(AC^2=19\)

\(AC=\sqrt{19}\)