Exercice : Exercices d'application du 1er tableau

Déterminer la fonction dérivée des fonctions suivantes ainsi que les ensembles de définitions :

Question

\(f(x)=3\)

Indice

\(f(x)=k \mapsto f'(x)=0\)

Solution

\(f'(x)=0\) \(D_f=\mathbb{R}\) \(D_{f'}=\mathbb{R}\)

Question

\(g(x)=x\)

Indice

\(f(x)=ax \mapsto f'(x)=a\)

Solution

\(g'(x)=1\) \(D_g=\mathbb{R}\) \(D_{g'}=\mathbb{R}\)

Question

\(h(x)=x^5\)

Indice

\(f(x)=x^n \mapsto f'(x)=nx^{n-1}\)

Solution

\(h'(x)=5x^4\) \(D_h=\mathbb{R}\) \(D_{h'}=\mathbb{R}\)

Question

\(k(x)=x^7\)

Indice

\(f(x)=x^n \mapsto f'(x)=nx^{n-1}\)

Solution

\(k'(x)=7x^6\) \(D_k=\mathbb{R}\) \(D_{k'}=\mathbb{R}\)

Question

\(l(x)=\frac{1}{x^3}\)

Indice

\(f(x)=\frac{1}{x^n} \mapsto f'(x)=\frac{-n}{x^{n+1}}\)

Solution

\(l'(x)=\frac{-3}{x^{3+1}}=\frac{-3}{x^4}\) \(D_l=\mathbb{R}\backslash\{0\}\) \(D_{f'}=\mathbb{R}\backslash\{0\}\)

Question

\(m(x)=\frac{1}{x^5}\)

Indice

\(f(x)=\frac{1}{x^n} \mapsto f'(x)=\frac{-n}{x^{n+1}}\)

Solution

\(m'(x)=\frac{-5}{x^{5+1}}=\frac{-5}{x^6}\) \(D_m=\mathbb{R}\backslash\{0\}\) \(D_{m'}=\mathbb{R}\backslash\{0\}\)

Question

\(n(x)=\sqrt{x}\)

Indice

\(f(x)=\sqrt{x} \mapsto f'(x)=\frac{1}{2\sqrt{x}}\)

Solution

\(n'(x)=\frac{1}{2\sqrt{x}}\) \(D_n=[0;+\infty[\) \(D_{n'}=]0;+\infty[\)