Exercice : Exercices d'applications du 2eme tableau 2
On donne la fonction \(f\) définie par l'expression \(f(x)\).
Déterminer l'expression \(f′(x)\) où \(f′\) désigne la fonction dérivée de \(f\)
ainsi que l'ensemble de définition des fonctions :
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
\(j(x)=\frac{x}{ 2x² - 5x + \frac{25}{8}}\)
Indice
\(\frac{u}{v} \mapsto \frac{u'v-uv'}{v^2}\)
\(k \mapsto 0\)
\(u+v \mapsto u'+v'\)
\(ku \mapsto ku'\)
\(x^n \mapsto nx^{n-1}\)
Solution
\(\begin{cases}u=x\\v=2x^2-5x+\frac{25}{8}\end{cases}\)
\(\iff \begin{cases}u'=1\\v'=4x-5\end{cases}\)
\(j'(x)=\frac{1(2x^2-5x+\frac{25}{8})-x(4x-5)}{(2x^2-5x+\frac{25}{8})^2}\)
\(\iff j'(x)=\frac{2x^2-5x+\frac{25}{8}-4x^2+5x}{(2x^2-5x+\frac{25}{8})^2}\)
\(\iff j'(x)=\frac{-2x^2+\frac{25}{8}}{(2x^2-5x+\frac{25}{8})^2}\)
\(2x^2-5x+\frac{25}{8}=0\) (2)
\(\Delta=b^2-4ac\)
\(\iff \Delta=(-5)^2-4\times 2 \times \frac{25}{8}\)
\(\iff \Delta=25-25=0\)
donc une unique solution à l'équation (2)
\(x_0=\frac{-b}{2a}=\frac{-(-5)}{2\times2}=\frac{5}{4}\)
\(\iff j'(x)=\frac{-2x^2+\frac{25}{8}}{(2(x-\frac{5}{4})^2)^2}\)
\(\iff j'(x)=\frac{-2x^2+\frac{25}{8}}{(\frac{2}{16}(4x-5)^2)^2}\)
\(\iff j'(x)=\frac{-2x^2+\frac{25}{8}}{(\frac{1}{8})^2(4x-5)^4}\)
\(\iff j'(x)=\frac{-2x^2+\frac{25}{8}}{\frac{1}{8^2}(4x-5)^4}\)
\(\iff j'(x)=\frac{-2x^2+\frac{25}{8}}{(4x-5)^4} \times \frac{8^2}{1}\)
\(\iff j'(x)=8\frac{-16x^2+25}{(4x-5)^4}\)
\(16x^2-25=(4x-5)(4x+5)\)
\(j'(x)=8\frac{-(4x-5)(4x+5)}{(4x-5)^4}\)
\(j'(x)=8\frac{-(4x+5)}{(4x-5)^3}\)
\(j'(x)=\frac{-8(4x+5)}{(4x-5)^3}\)
donc \(D_j=\mathbb{R}\backslash\{\frac{5}{4}\}\)\(D_{j'}=\mathbb{R}\backslash\{\frac{5}{4}\}\)
Question
Question
Question
Question
Question
Question
Question
Question
Question
\(s(x)= (2x − 4)^4\)
Indice
\(k \mapsto 0\)
\(ku \mapsto ku'\)
\(x \mapsto 1\)
\(u+v \mapsto u'+v'\)
\(u^n \mapsto nu^{n-1} \times u'\)
Solution
\(s'(x)=4(2x-4)^3 \times 2\)
\(\iff s'(x)=8(2x-4)^3=8(8x^3 -48x^2 -32x -64)\)
\(\iff s'(x)=64x^3 -384x^2+768x -512\)
car
\((2x-4)^3=(2x-4)^2\times (2x-4)=(4x^2-16x+16) \times (2x-4)\)
\(\iff (2x-4)^3=4x^2 \times 2x +4x^2 \times (-4) +(-16x) \times 2x + (-16x)\times (-4)+16 \times 2x +16 \times (-4)\)
\(\iff (2x-4)^3=8x^3 -16x^2 -32x^2 +64x+32x -64=8x^3 -48x^2 +96x -64\)
donc \(D_s=\mathbb{R}\)
\(D_{s'}=\mathbb{R}\)
Question
\(t(x)= (1 − 4x)^5\)
Indice
\(k \mapsto 0\)
\(ku \mapsto ku'\)
\(x \mapsto 1\)
\(u+v \mapsto u'+v'\)
\(u^n \mapsto nu^{n-1} \times u'\)
Solution
\(t'(x)=5(1 − 4x)^4 \times (-4)\)
\(\iff t'(x)=-20(1-4x)^4=-20(256x^4-256x^3+96x^2-16x+1)\)
\(\iff t'(x)=-5120x^4+5120x^3-11920x^2+32x-20\)
car
\((1-4x)^2=1-8x+16x^2\)
\((1-4x)^4=(1-8x+16x^2)(1-8x+16x^2)=1-8x+16x^2-8x+64x^2-128x^3+16x^2-128x^3+256x^4\)
\((1-4x)^4=256x^4-256x^3+96x^2-16x+1\)
donc \(D_t=\mathbb{R}\)
\(D_{t'}=\mathbb{R}\)
Question
\(u(x)= 5\sqrt{x}+ \frac{1}{2x}\)
Indice
\(ku \mapsto ku'\)
\(\sqrt{x} \mapsto \frac{1}{2\sqrt{x}}\)
\(u+v \mapsto u'+v'\)
\(\frac{1}{u}\mapsto \frac{-u'}{u^2}\)
Solution
\(u'(x)= 5\frac{1}{2\sqrt{x}}+ \frac{-2}{(2x)^2}\)
\(u'(x)= 5\frac{1}{2\sqrt{x}}+ \frac{-2}{4x^2}\)
\(u'(x)= 5\frac{2x\sqrt{x}}{4x^2}+ \frac{-2}{4x^2}\)
\(u'(x)= \frac{10x\sqrt{x}}{4x^2}+ \frac{-2}{4x^2}\)
\(u'(x)= \frac{10x\sqrt{x}-2}{4x^2}\)
\(u'(x)= \frac{5x\sqrt{x}-1}{2x^2}\)
\(u'(x)= \frac{5x^2-\sqrt{x}}{2x^2\sqrt{x}}\)
donc \(D_s=\mathbb{R}_+\)
\(D_{s'}=\mathbb{R}_+^*\)
Question
\(v(x)=\frac{3x-4}{2x+7}\)
Indice
\(ku \mapsto ku'\)
\(x \mapsto 1\)
\(u+v \mapsto u'+v'\)
\(\frac{u}{v}\mapsto \frac{u'v-uv}{v^2}\)
Solution
\(\begin{cases}u=3x-4\\v=2x+7\end{cases}\)
\(\iff \begin{cases}u'=3\\v'=2\end{cases}\)
\(v'(x)=\frac{3(2x+7)-(3x-4)\times 2}{(2x+7)^2}\)
\(\iff v'(x)=\frac{6x+21-6x+8}{(2x+7)^2}\)
\(\iff v'(x)=\frac{29}{(2x+7)^2}\)
\(2x+7=0\)
\(\iff 2x=-7\)
\(\iff x=-3,5\)
donc \(D_v=\mathbb{R}\backslash\{-3,5\}\)
\(D_{v'}=\mathbb{R}\backslash\{-3,5\}\)