Calculer les dérivées respectives des fonctions suivantes, spécifier leur ensemble de définition :
\(b(x)=2x^4 − 3x^2 + 7\)
\(x^n\mapsto nx^{n-1}\)
\(x \mapsto 1\)
\(k\mapsto 0\)
\(ku\mapsto ku'\)
\(u+v\mapsto u'+v'\)
\(b'(x)=2\times 4x^3-3 \times 2x\)
\(b'(x)=8x^3-6x\)
\(D_b=\mathbb{R}\) et \(D_{b'}=\mathbb{R}\)
\(c(x)=x^{3}+x^{2}+x+1\)
\(c'(x)=3 x^2+2x+1\)
\(D_c=\mathbb{R}\) et \(D_{c'}=\mathbb{R}\)
\(d(x)=3x^{2}-5x+4.\)
\(d'(x)=3 \times 2x-5 \times 1\)
\(\iff f'(x)=6x-5\)
\(D_d=\mathbb{R}\) et \(D_{d'}=\mathbb{R}\)
\(e(x)=-2x^{3}+3x^{2}+9.\)
\(e'(x)=-2 \times 3x^2+3 \times 2x\)
\(\iff e'(x)=-6x^2+6x\)
\(D_e=\mathbb{R}\) et \(D_{e'}=\mathbb{R}\)
\(f(x)=3x^{2}+5x\)
\(f'(x)=3\times 2x+5 \times 1\)
\(\iff f'(x)=6x+5\)
\(D_f=\mathbb{R}\) et \(D_{f'}=\mathbb{R}\)
\(g(x)=\frac{x^{2}}{8}+9\)
\(\iff g(x)=\frac{1}{8}x^{2}+9\)
\(g'(x)=\frac{1}{8}\times 2x\)
\(\iff g'(x)=\frac{2}{8}x\)
\(\iff g'(x)=\frac{1}{4}x\)
\(D_g=\mathbb{R}\) et \(D_{g'}=\mathbb{R}\)
\(h(x)=5x^2-8x+2\)
\(h'(x)=5\times 2x-8\times 1+0\)
\(\iff h'(x)=10x-8\)
\(D_h=\mathbb{R}\) et \(D_{h'}=\mathbb{R}\)
\(i(x)=-4x^3+7x+9\)
\(i'(x)=-4\times 3x^2+7\times 1+0\)
\(\iff i'(x)=-12x^2+7\)
\(D_i=\mathbb{R}\) et \(D_{i'}=\mathbb{R}\)
\(j(x)=2x^{3}+\dfrac{x^{2}}{4}-6x+3\)
\(j'(x)=2\times 3x^2+\dfrac{1}{4}\times 2x-6 \times 1+0\)
\(\iff j'(x)=6x^2+\dfrac{1}{2}\times x-6\)
\(D_j=\mathbb{R}\) et \(D_{j'}=\mathbb{R}\)
\(k(x)=(x+2)(-3x+5)-1\)
\(uv\mapsto u'v+uv'\)
\(\begin{cases}u=x+2\\v=-3x+5\end{cases}\)
\(\begin{cases}u'=1\\v'=-3\end{cases}\)
\(k'(x)=1(-3x+5)+(-3)(x+2)\)
\(\iff k'(x)=-3x+5-3x-6\)
\(\iff h'(x)=-6x-1\)
\(D_k=\mathbb{R}\) et \(D_{k'}=\mathbb{R}\)