Exercice : Basique 9

ABCD est un parallélogramme

avec AB = 4, AD = 5 et AC = 7.

Question

1.Calculer \(\vec{AB}.\vec{AD}\)

Solution

\((\vec{AB}+\vec{AD})^2=\vec{AB}^2+\vec{AB}.\vec{AD}+\vec{AD}^2\)

\(\iff (\vec{AB}+\vec{AD})^2=\vec{AB}^2+\vec{AB}.\vec{AD}+\vec{AD}^2\)

\(\vec{AB}+\vec{AD}=\vec{AB}+\vec{BC}=\vec{AC}\)

\(\iff \vec{AC}^2=\vec{AB}^2+2\vec{AB}.\vec{AD}+\vec{AD}^2\)

\(\iff 7^2=4^2+2\vec{AB}.\vec{AD}+5^2\)

\(\iff 49=16+2\vec{AB}.\vec{AD}+25\)

\(\iff 49=41+2\vec{AB}.\vec{AD}\)

\(\iff 8=2\vec{AB}.\vec{AD}\)

\(\iff \vec{AB}.\vec{AD}=4\)

\(\vec{AB}.\vec{AD}=4 \times 5 \times cos((\vec{AB},\vec{AD}))=4\)

\(\iff cos((\vec{AB},\vec{AD}))=\frac{4}{4 \times 5}\)

\(\iff cos((\vec{AB},\vec{AD}))=\frac{1}{5}\)

\(\iff cos((\vec{AB},\vec{AD}))=0,2\)

\(\iff (\vec{AB},\vec{AD})=Arccos(0,2)\simeq78,46\)

Question

2. En déduire BD

Solution

\(\vec{BD}^2=(\vec{BA}+\vec{AD})^2\)

\(\iff \vec{BD}^2=(-\vec{AB}+\vec{AD})^2\)

\(\iff \vec{BD}^2=(\vec{AD}-\vec{AB})^2\)

\(\iff \vec{BD}^2=\vec{AD}^2-2.\vec{AD}.\vec{AB}+\vec{AB}^2\)

\(\iff BD^2=AD^2-2.\vec{AD}.\vec{AB}+AB^2\)

\(\iff BD^2=AD^2-2.\vec{AD}.\vec{AB}+AB^2\)

\(\iff BD^2=5^2-2\times 4+4^2\)

\(\iff BD^2=25-8+16\)

\(\iff BD^2=41-8\)

\(\iff BD^2=33\)

\(\iff BD=\sqrt{33}\)