Donner la mesure en degré de chacun des angles :
\(\frac{\pi}{5}\) radians
\(2\pi \mapsto360\)
\(\frac{\pi}{5} \mapsto \frac{360}{2\pi} \times \frac{\pi}{5}\)
\(\iff \frac{\pi}{5} \mapsto \frac{360}{10}=36\)
\(\frac{3\pi}{4}\) radians
\(\frac{3\pi}{4} \mapsto \frac{360}{2\pi} \times \frac{3\pi}{4}\)
\(\iff \frac{3\pi}{4} \mapsto \frac{360\times 3}{8}=45\times 3=135\)
\(\frac{5\pi}{3}\) radians
\(\frac{5\pi}{3} \mapsto \frac{360}{2\pi} \times \frac{5\pi}{3}\)
\(\iff \frac{5\pi}{3} \mapsto \frac{360\times 5}{6}=60 \times 5=300\)
\(\frac{\pi}{12}\) radians
\(\frac{\pi}{12} \mapsto \frac{360}{2\pi} \times \frac{\pi}{12}\)
\(\iff \frac{\pi}{12} \mapsto \frac{360}{24}=15\)