Exercice : Exercice basique 8

Question

1. En vous appuyant sur la figure ci-dessus, tracée dans le cercle trigonométrique, compléter ET redémontrer le résultat du cours suivant : \(\cos^{2}(x)+\sin^{2}(x)=...........\)

Solution

D'après le théorème de Pythagore dans le triangle OHM,

rectangle en H d'hypoténuse OM :

\(OM^2=OH^2+HM^2\)

\(\iff 1^2=cos^2 x+sin^2 x\)

\(\iff cos^2 x+sin^2 x=1\)

Question

2. Sachant que \(\cos(\frac{\pi}{8})=\dfrac{\sqrt{2+\sqrt{2}}}{2}\)

déterminer \(\cos(-\frac{\pi}{8})\)

ainsi que \(\cos^{2}(-\frac{\pi}{8})\).

Solution

\(\cos(-\frac{\pi}{8})=\dfrac{\sqrt{2+\sqrt{2}}}{2}\)

car \(cos(x)=cos(-x)\)

\(\cos^{2}(-\frac{\pi}{8})=(\dfrac{\sqrt{2+\sqrt{2}}}{2})^2\)

\(\iff \cos^{2}(-\frac{\pi}{8})=\dfrac{(\sqrt{2+\sqrt{2}})^2}{4}\)

\(\iff \cos^{2}(-\frac{\pi}{8})=\dfrac{2+\sqrt{2}}{4}\)

Question

3. En déduire la valeur exacte de \(\sin^{2}(-\frac{\pi}{8})\) puis celle de \(\sin(-\frac{\pi}{8}).\)

Solution

\(\cos^{2}(x)+\sin^{2}(x)=1\)

\(\iff \cos^{2}(-\frac{\pi}{8})+\sin^{2}(-\frac{\pi}{8})=1\)

\(\iff \sin^{2}(-\frac{\pi}{8})=1-\cos^{2}(-\frac{\pi}{8})\)

\(\iff \sin^{2}(-\frac{\pi}{8})=1-(\dfrac{2+\sqrt{2}}{4}\)

\(\iff \sin^{2}(-\frac{\pi}{8})=\frac{4}{4}-(\dfrac{2+\sqrt{2}}{4}\)

\(\iff \sin^{2}(-\frac{\pi}{8})=\frac{4-(2+\sqrt{2})}{4}\)

\(\iff \sin^{2}(-\frac{\pi}{8})=\frac{2-\sqrt{2}}{4}\)

\(\iff \sin(-\frac{\pi}{8})=\sqrt{\frac{2-\sqrt{2}}{4}}\)

\(\iff \sin(-\frac{\pi}{8})=\frac{\sqrt{2-\sqrt{2}}}{2}\)