Exercice : Exercice 6

1.Déterminer les valeurs exactes des expressions ci-dessous :

Question

a.\(sin(\frac{7\pi}{3})\)

Solution

\(\frac{7\pi}{3}\notin]-\pi ;\pi]\)

\(\frac{7\pi}{3}=\frac{6\pi}{3}+\frac{\pi}{3}\)

\(\iff \frac{7\pi}{3}=2\pi+\frac{\pi}{3}\)

donc \(\frac{\pi}{3}\) est la mesure principale de \(\frac{7\pi}{3}\)

donc

\(sin(\frac{7\pi}{3})=sin(\frac{\pi}{3}=\frac{\sqrt{3}}{2}\)

Question

b.\(cos(-\frac{5\pi}{4})\)

Solution

\(\frac{-5\pi}{4}\notin]-\pi ;\pi]\)

\(\frac{-\frac{5\pi}{4}}{2\pi}\)

\(= -\frac{5\pi}{4} \times \frac{\pi}{2}\)

\(= -\frac{5}{8}\)

\(-1\le -\frac{5}{8}\le 0\)

\(-\frac{5\pi}{4}+2\pi=-\frac{5\pi}{4}+\frac{8\pi}{4}=+\frac{3\pi}{4}\)

La mesure principale \(-\frac{5\pi}{4}\) est \(\frac{3\pi}{4}\)

\(cos(\frac{3\pi}{4})=-cos(\frac{\pi}{4})=-\frac{\sqrt{2}}{2}\)

Question

c.\(cos(\frac{5\pi}{6})\)

Solution

\(\frac{5\pi}{6}\in]-\pi ;\pi]\)

\(cos(\frac{5\pi}{6})=-cos(\frac{\pi}{6})=-\frac{\sqrt{3}}{2}\)