Exercice : Exercice 13
On considère un réel \(x\in [-\frac{\pi}{2} ;\frac{\pi}{2}]\) tel que \(sin(x)=\frac{\sqrt{2}-\sqrt{6}}{4}\)
Question
1. Déterminer la valeur exacte de \(cos(x)\)
Solution
\(sin(x)=\frac{\sqrt{2}-\sqrt{6}}{4}\)
\(cos^2(x)+sin^2(x)=1\)
\(\iff cos^2(x)+(\frac{\sqrt{2}-\sqrt{6}}{4})^2=1\)
\(\iff cos^2(x)+\frac{\sqrt{2}^2-2\sqrt{2} \times \sqrt{6}+\sqrt{6}^2}{16}=1\)
\(\iff cos^2(x)+\frac{2-2\sqrt{12}+6}{16}=1\)
\(\iff cos^2(x)+\frac{8-2\sqrt{4 \times 3}}{16}=1\)
\(\iff cos^2(x)+\frac{8-2 \times 2\sqrt{3}}{16}=1\)
\(\iff cos^2(x)+\frac{8-4\sqrt{3}}{16}=1\)
\(\iff cos^2(x)+\frac{2-\sqrt{3}}{4}=1\)
\(\iff cos^2(x)=1-\frac{2-\sqrt{3}}{4}\)
\(\iff cos^2(x)=\frac{4}{4}-\frac{2-\sqrt{3}}{8}\)
\(\iff cos^2(x)=\frac{4-(2-\sqrt{3})}{8}\)
\(\iff cos^2(x)=\frac{2+\sqrt{3}}{8}\)
\(\iff cos^2(x)=\frac{2+\sqrt{3}}{4}\)
\(\iff cos(x)=\sqrt{\frac{2+\sqrt{3}}{4}}\)
\(\iff cos(x)=\frac{\sqrt{2+\sqrt{3}}}{2}\) ou \(cos(x)=-\frac{\sqrt{2+\sqrt{3}}}{2}\)
or \(x\in [-\frac{\pi}{2} ;\frac{\pi}{2}]\) donc \(cos(x) \ge 0\)
Finalement :
\(cos(x)=\frac{\sqrt{2+\sqrt{3}}}{2}\)
Question
On sait que \(x\in\) {\(\frac{\pi}{12} ;\frac{5\pi}{12} ;-\frac{\pi}{12} ;\frac{-5\pi}{12}\)}
Déterminer la valeur exacte de \(x\)
Solution
Les angles \(\frac{\pi}{12}\) et \(\frac{5\pi}{12}\) sont impossibles car \( sin(x)\) est négatif.
Or ces deux angles correspondent à des sinus positifs.
\(0 <-\frac{\pi}{12} < \frac{-\pi}{4}=\frac{-3\pi}{12}<\frac{-5\pi}{12}<\frac{-\pi}{2}=\frac{-6\pi}{12}\)
et donc
\(|sin(\frac{-5\pi}{12})|>cos(\frac{-5\pi}{12})\)
\(|sin(-\frac{\pi}{12})|<cos(\frac{-\pi}{12})\)
or
\(cos(x)=\frac{\sqrt{2+\sqrt{3}}}{2}\simeq 0,97\)
\(sin(x)=\frac{\sqrt{2}-\sqrt{6}}{4}\simeq -0,26\)
donc \(|sin(x)|<cos(x)\) et donc \(x=-\frac{\pi}{12}\)