Exercice : Exercice 21 :

Question

1.En remarquant l'égalité

\(\frac{\pi}{12}=\frac{\pi}{3}-\frac{\pi}{4}\)

déterminer les valeurs de \(cos(\frac{\pi}{12})\) et \(sin(\frac{\pi}{12})\)

Indice

\(cos(a-b)=cos(a)cos(b)+sin(a)sin(b)\)

\(sin(a-b)=sin(a)cos(b)-cos(a)sin(b)\)

Solution

\(\frac{\pi}{3}-\frac{\pi}{4}=\frac{4\pi}{12}-\frac{3\pi}{12}=\frac{\pi}{12}\)

\(cos(\frac{\pi}{12})=cos(\frac{\pi}{3}-\frac{\pi}{4})=cos(\frac{\pi}{3})cos(\frac{\pi}{4})+sin(\frac{\pi}{3})sin(\frac{\pi}{4})=\frac{1}{2} \times \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}\)

\(cos(\frac{\pi}{12})=\frac{\sqrt{2}}{4}+\frac{\sqrt{3} \times \sqrt{2}}{4}=\frac{\sqrt{2}(1+\sqrt{3})}{4}\)

\(\color{red}{cos(\frac{\pi}{12})=\frac{\sqrt{2}(1+\sqrt{3})}{4}}\)

\(\color{magenta}{\textbf{Rappel à l'exercice 22, on a trouvé :}}\)

\(\color{red}{cos(\frac{\pi}{12})=\frac{\sqrt{2+\sqrt{3}}}{2}}\)

Montrons que les deux valeurs sont égales :

\(cos(\frac{\pi}{12})=\frac{\sqrt{4}\sqrt{2+\sqrt{3}}}{4}\)

\(cos(\frac{\pi}{12})=\frac{\sqrt{2}\times \sqrt{2(2+\sqrt{3})}}{4}\)

\(cos(\frac{\pi}{12})=\frac{\sqrt{2}\times \sqrt{4+2\sqrt{3}}}{4}\)

\(cos(\frac{\pi}{12})=\frac{\sqrt{2}\times \sqrt{1+2\sqrt{3}+3}}{4}\)

\(cos(\frac{\pi}{12})=\frac{\sqrt{2}\times \sqrt{1+2\sqrt{3}+3}}{4}\)

\(cos(\frac{\pi}{12})=\frac{\sqrt{2}\times \sqrt{(1+\sqrt{3})^2}}{4}\)

\(cos(\frac{\pi}{12})=\frac{\sqrt{2}\times (1+\sqrt{3})}{4}\)

Les deux valeurs sont donc égales.

\(\frac{\pi}{3}-\frac{\pi}{4}=\frac{4\pi}{12}-\frac{3\pi}{12}=\frac{\pi}{12}\)

\(sin(\frac{\pi}{12})=sin(\frac{\pi}{3}-\frac{\pi}{4})=sin(\frac{\pi}{3})cos(\frac{\pi}{4})-cos(\frac{\pi}{3})sin(\frac{\pi}{4})=\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}-\frac{1}{2} \times \frac{\sqrt{2}}{2}\)

\(cos(\frac{\pi}{12})=\frac{\sqrt{3} \times \sqrt{2}}{4} - \frac{\sqrt{2}}{4}=\frac{\sqrt{2}(\sqrt{3}-1)}{4}\)

\(\color{red}{cos(\frac{\pi}{12})=\frac{\sqrt{2}(\sqrt{3}-1)}{4}}\)

Question

2.Déterminer les valeurs de

\(cos(\frac{7\pi}{12})\) et \(sin(\frac{7\pi}{12})\)

Indice

\(cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\)

\(sin(a+b)=sin(a)cos(b)+cos(a)sin(b)\)

Solution

\(\frac{\pi}{3}+\frac{\pi}{4}=\frac{4\pi}{12}+\frac{3\pi}{12}=\frac{7\pi}{12}\)

\(cos(\frac{7\pi}{12})=cos(\frac{\pi}{3}+\frac{\pi}{4})=cos(\frac{\pi}{3})cos(\frac{\pi}{4})-sin(\frac{\pi}{3})sin(\frac{\pi}{4})=\frac{1}{2} \times \frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}\)

\(cos(\frac{7\pi}{12})=\frac{\sqrt{2}}{4}-\frac{\sqrt{3} \times \sqrt{2}}{4}=\frac{\sqrt{2}(1-\sqrt{3})}{4}\)

\(\color{red}{cos(\frac{7\pi}{12})=\frac{\sqrt{2}(1-\sqrt{3})}{4}}\)

\(\frac{\pi}{3}+\frac{\pi}{4}=\frac{4\pi}{12}+\frac{3\pi}{12}=\frac{7\pi}{12}\)

\(sin(\frac{7\pi}{12})=sin(\frac{\pi}{3}+\frac{\pi}{4})=sin(\frac{\pi}{3})cos(\frac{\pi}{4})+cos(\frac{\pi}{3})sin(\frac{\pi}{4})=\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}+\frac{1}{2} \times \frac{\sqrt{2}}{2}\)

\(sin(\frac{7\pi}{12})=\frac{\sqrt{3} \times \sqrt{2}}{4} + \frac{\sqrt{2}}{4}=\frac{\sqrt{2}(\sqrt{3}+1)}{4}\)

\(\color{red}{sin(\frac{7\pi}{12})=\frac{\sqrt{2}(\sqrt{3}+1)}{4}}\)