Exercice : Exercice 28 :

a et b sont deux réels de l'intervalle [0;\(\frac{\pi}{2}\)] tel que :

\(cos a = \frac{3}{5}\) et \(sin b =\frac{1}{2}\)

Question

1. Calculer \(sin a\) et \(cos b\).

Solution

Utilisons la relation \(cos^2 x +sin^2x=1\)

\(cos^2 a+sin^2 a =1\)

d'où

\((\frac{3}{5})^2+sin^2 a =1\)

\((\frac{9}{25})+sin^2 a =1\)

\(sin^2 a =1-\frac{9}{25}\)

\(sin^2 a =\frac{25}{25}-\frac{9}{25}\)

\(sin^2 a =\frac{16}{25}\)

\(\color{magenta}{sin a =\frac{4}{5}=0,8}\)

en effet \(sin a\ge0\) car \(a \in[0;\frac{\pi}{2}]\)

de même

\(cos^2b+sin^2 b =1\)

\(cos^2b+(\frac{1}{2})^2 =1\)

\(cos^2 b=1-\frac{1}{4}\)

\(cos^2 b =\frac{4}{4}-\frac{1}{4}\)

\(cos^2 b =\frac{3}{4}\)

\(\color{magenta}{cos b=\frac{\sqrt{3}}{2}}\)

en effet \(cos b\ge0\) car \(b \in[0;\frac{\pi}{2}]\)

Question

2. En déduire \(cos(a + b)\) et \(sin(a + b)\).\(\)

Solution

\(cos(a+b)=cos(a)cos(b)-sin(a)sin(b)=\frac{3}{5}\times \frac{\sqrt{3}}{2}- \frac{4}{5} \times \frac{1}{2}=\frac{3\sqrt{3}}{10}- \frac{4}{10}=\frac{3\sqrt{3}-4}{10}\simeq0,12\)

\(sin(a+b)=sin(a)cos(b)+cos(a)sin(b)=\frac{4}{5}\times \frac{\sqrt{3}}{2}+ \frac{3}{5} \times \frac{1}{2}=\frac{4\sqrt{3}}{10}+ \frac{3}{10}=\frac{4\sqrt{3}+3}{10}\simeq0,99\)